Implementation of Public Health Surveillance of Carbapenemase-Producing Enterobacteriaceae in Victoria, Australia

C.R. Lane*, J. Brett, M.B. Schultz, K. Stevens, A. van Diemen, S.A. Ballard, N.L. Sherry, J.C. Kwong, D.R.M. Cameron, D.A. Williamson, M. Easton, B.P. Howden

Communicable Disease Control Conference
27th June 2017

Background

• Carbapenemase producing enterobacteriaceae (CPE)
• Carbapenemases, enzymes that confer resistance to carbapenems
• Increased morbidity and mortality
• Outbreak potential

Common Carbapenemases

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Abbreviation</th>
<th>Major sub-types</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Klebsiella pneumoniae carbapenemase</td>
<td>KPC</td>
<td>KPC-2, KPC-3</td>
</tr>
<tr>
<td></td>
<td>New-delhi metallo-beta-lactamase</td>
<td>NDM</td>
<td>NDM-1, NDM-5, NDM-7</td>
</tr>
<tr>
<td>B</td>
<td>Imipenemase metallo-beta-lactamase</td>
<td>IMP</td>
<td>IMP-4</td>
</tr>
<tr>
<td></td>
<td>Verona imipenemase metallo-beta-lactamase</td>
<td>VIM</td>
<td>VIM-1, VIM-2</td>
</tr>
<tr>
<td></td>
<td>OXA-23-like carbapenemases</td>
<td>OXA-23-like</td>
<td>OXA-23</td>
</tr>
</tbody>
</table>

Victorian KPC-2 Outbreak

Combined genomic and epidemiological investigation of a state-wide outbreak of KPC-producing Enterobacteriaceae

Session 4D: Element Room, 1:30pm, tomorrow.
Public Health Surveillance of CPE

- Identify transmission
- Implement standardised control measures
 - Oversight by a centralised incident management team (VCIMT)
- Communicate CPE risk to other facilities
- Inform response & empiric treatment (antibiograms)
Victorian CPE Surveillance and Response Unit

Suspected CPE isolate identified

- Isolate referred to MDU PHL
- DHHS and VICNISS notified

Confirmatory testing performed

- CPE Confirmed
- Not CPE (rejected)

Infection control actions initiated

Epidemiological data collected

- Genomic relatedness to other isolates assessed

Epidemiological and genomic data evaluated for local transmission

Local transmission suspected?

- Yes
 - Outbreak investigation
 - Transmission risk area may be designated by Vic CPE Incident management team

- No
 - No further action

Monitor trends

- If changes observed
 - Yes
 - Outbreak investigation
 - Transmission risk area may be designated by Vic CPE Incident management team
 - No

Victorian CPE Surveillance and Response Unit

- Suspected CPE isolate identified
- Epidemiological data collected
- Genomic relatedness to other isolates assessed
- Implementation of the Victorian Guideline on CPE

Gene(s) detected

- IMP
- KPC
- NDM
- NDM, OXA-48-like
- OXA-48-like
- Other OXA^*
- VIM
- SME

Implementation of the Victorian Guideline on CPE

Patients with CPE identified at MDU PHL, by month and carbapenemase gene type, 01 January 2012 – 31 December 2016
2016 Victorian CPE Cases

Location at Specimen Collection

<table>
<thead>
<tr>
<th>Location at Specimen Collection</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital – Admitted</td>
<td>67</td>
<td>(70%)</td>
</tr>
<tr>
<td>Hospital – Emergency/Outpatients</td>
<td>18</td>
<td>(19%)</td>
</tr>
<tr>
<td>Medical clinic (inc. GP)</td>
<td>10</td>
<td>(10%)</td>
</tr>
<tr>
<td>Aged care facility</td>
<td>1</td>
<td>(1%)</td>
</tr>
<tr>
<td>Total</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Presentation

<table>
<thead>
<tr>
<th>Clinical Presentation</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonisation</td>
<td>57</td>
<td>(59%)</td>
</tr>
<tr>
<td>Infection</td>
<td>33</td>
<td>(34%)</td>
</tr>
<tr>
<td>Urinary tract</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Bacteraemia</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>2</td>
<td>(6%)</td>
</tr>
</tbody>
</table>

Risk Factors Differ by Carbapenemase

NDM
- Majority (91%) overseas travellers, most hospitalised
- Some putative community acquisition in India

Carbapenemase Genes

NB: Genes included will exceed total number of isolates, due to 3 isolates with multiple gene types detected.

Carbapenemase Gene Group

- South and Central Asia
- South East Asia
- Middle East
- China
- Greece
- Other
- No
- Unknown
Risk Factors Differ by Carbapenemase

<table>
<thead>
<tr>
<th>Carbapenemase Gene Group</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>South and Central Asia</td>
<td>30</td>
</tr>
<tr>
<td>South East Asia</td>
<td>25</td>
</tr>
<tr>
<td>Middle East</td>
<td>20</td>
</tr>
<tr>
<td>China</td>
<td>15</td>
</tr>
<tr>
<td>Greece</td>
<td>10</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
</tr>
</tbody>
</table>

NDM
- Majority (91%) overseas travellers, most hospitalised
- Some putative community acquisition in India

OXA-48-like
- Found in travellers (76%) and non-travellers (24%), suggesting some unrecognised local transmission

KPC
- Small number of cases with overseas hospitalisation (Greece)
- Most within well defined local *K. pneumoniae* outbreaks
Risk Factors Differ by Carbapenemase

<table>
<thead>
<tr>
<th>Carbapenemase</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDM</td>
<td>Majority (91%) overseas travellers, most hospitalised Some putative community acquisition in India</td>
</tr>
<tr>
<td>OXA-48-like</td>
<td>Found in travellers (76%) and non-travellers (24%), suggesting some unrecognised local transmission</td>
</tr>
<tr>
<td>KPC</td>
<td>Small number of cases with overseas hospitalisation (Greece) Most within well defined local K. pneumoniae outbreaks</td>
</tr>
<tr>
<td>IMP</td>
<td>Rarely associated with travel Widely distributed across species Local transmission observed in multiple species</td>
</tr>
</tbody>
</table>

Local Transmission of CPE

<table>
<thead>
<tr>
<th>Gene</th>
<th>Species</th>
<th>2016 cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPC-2</td>
<td>K. pneumoniae</td>
<td>6</td>
</tr>
<tr>
<td>KPC-2</td>
<td>C. farmeri</td>
<td>2</td>
</tr>
<tr>
<td>IMP-4</td>
<td>K. pneumoniae</td>
<td>3</td>
</tr>
<tr>
<td>IMP-4</td>
<td>K. oxytoca</td>
<td>2</td>
</tr>
<tr>
<td>IMP-4</td>
<td>C. freundii</td>
<td>4</td>
</tr>
</tbody>
</table>

??Unidentified transmission networks
Why?

• Long colonisation periods
 • Cases temporally/geographically dispersed at CPE identification

• Same carbapenemase gene, bacterial species +/- multi locus sequence type

• Epidemiological and genomic investigation

Person, place and time \downarrow Consistent with transmission

Hypothesis for time and place of transmission (direct or indirect)

Centralised combined epidemiological and genomic investigation needed:
- Long time frames
- Frequent and complex patient movements
- Transmission at multiple facilities
- Multiple possible exposures.

2017 so far

*Includes carbapenem degrading only, such as OXA-23-like, OXA-24/40-like and OXA-51-like genes
Conclusions

• Local acquisition mainly limited to IMP-4 and KPC-2
• Considerable importation of CPE
• Centralised combined epi and genomic surveillance critical to:
 • Identifying local transmission networks
 • Implementing targeted control measures
Acknowledgements

MDU PHL
Mark Schultz
Kerrie Stevens
Donna Cameron
Ben Howden
Jason Kwong
Susan Ballard

DHHS
Marion Easton
Annaleise van Diemen
Suzana Talevska
VCIMT members

VICNISS
Judy Brett
Ann Bull

IMP-4 Complexity
Local transmission networks

<table>
<thead>
<tr>
<th>Gene</th>
<th>Species</th>
<th>2016 cases</th>
<th>Facilities of suspected transmission</th>
<th>All cases identified at facility where transmission is suspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPC-2</td>
<td>K. pneumoniae</td>
<td>6</td>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td>KPC-2</td>
<td>C. farmeri</td>
<td>2</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>IMP-4</td>
<td>K. pneumoniae</td>
<td>3</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>IMP-4</td>
<td>K. pneumoniae</td>
<td>2</td>
<td>1</td>
<td>v</td>
</tr>
<tr>
<td>IMP-4</td>
<td>K. oxytoca</td>
<td>4</td>
<td>1</td>
<td>v</td>
</tr>
</tbody>
</table>

Patient Demographics

<table>
<thead>
<tr>
<th>Sex, n (%)</th>
<th>All</th>
<th>Carbenemase gene detected</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>213/382 (56%)</td>
<td>43/96 (45%)</td>
<td>170/286 (59%)</td>
<td></td>
</tr>
<tr>
<td>Age, median (range)</td>
<td>72 (0 – 99)</td>
<td>66 (3 – 90)</td>
<td>74 (0 – 99)^</td>
<td></td>
</tr>
</tbody>
</table>

^Age unknown for two rejected cases
Travel

Overseas travel

<table>
<thead>
<tr>
<th>Yes</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>49</td>
<td>(51%)</td>
</tr>
<tr>
<td>No</td>
<td>45</td>
<td>(47%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>2</td>
<td>(2%)</td>
</tr>
<tr>
<td>Total</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

Country of travel

- **South & Central Asia** (India, Sri Lanka, Bangladesh, Pakistan, Afghanistan) - 24
- **South East Asia** (Vietnam, Cambodia, Thailand, Philippines, Malaysia) - 11
- **Greece** - 4
- **Middle East** (Turkey, Lebanon) - 4
- **China** - 2
- **Other** - 4

Parallel Outbreak investigations

Genomics --- Epidemiology

- Consistent with transmission
- Commonality in person, place and time.
- Hypothesis for time and place of transmission (direct or indirect - enviro, staff, colonisation)
- Transmission risk area
<table>
<thead>
<tr>
<th>Travel group</th>
<th>Gene</th>
<th>Organism</th>
<th>Travel location(s)</th>
<th>(12 months prior to identification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overseas</td>
<td>KPC-2</td>
<td>K. pneumoniae</td>
<td>India and south Asia</td>
<td>Greece</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>OXA-181</td>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>NDM-5</td>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Includes carbapenem degarding only, such as OXA-23-like, OXA-24/48-like and OXA-51-like genes

*October 2012, MDU PHL conducted a one month snapshot of CRE in Victoria.
Current and Future Research

- Understanding local IMP-4 diversity and transmission networks
- Prevalence and role of environmental contamination
- Duration and role of long term colonisation
- Screening sensitivity, antibiotic exposure
Carbapenemase status, by species

High % carbapenemase producers
Low % carbapenemase producers