Respiratory virus associated community-acquired pneumonia in Western Australian Children: case-control study

Mejbah Bhuiyan
PhD Candidate, School of Paediatrics and Child Health
The University of Western Australia
27 June, 2017

Background

• Pneumonia - the leading cause of morbidity and mortality among young children worldwide
 – Childhood pneumonia in Australia: 5-8/1000 person years

• Causative agent: Bacteria, virus and both

• Pneumococcal conjugate vaccine – Immunization schedule in 2005

• Influenza vaccine – Low uptake

• Maternal RSV vaccine currently in phase III trials
Asymptomatic carriage of respiratory viruses in Australian children

<table>
<thead>
<tr>
<th>Study</th>
<th>Specimen</th>
<th>% positive</th>
<th>Viruses identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore, H et al. 2010</td>
<td>Nasal aspirate</td>
<td>25% for any virus</td>
<td>HRV (20%), Adenovirus (6%), Coronavirus (4%), RSV (0.5%)</td>
</tr>
<tr>
<td>Wiertsema et al. 2011</td>
<td>Nasopharyngeal swab</td>
<td>71% for any virus</td>
<td>HRV (42%), HBoC (8%), RSV (8%), Coronavirus (5%), HPIV (4%)</td>
</tr>
</tbody>
</table>

Knowledge gap

- Actual contribution of pathogen remains unclear
- Only few case-control studies on childhood viral pneumonia in developed countries in the era of routine Hib and pneumococcal vaccination

- PneumoWA study : May 2015- ongoing
 - **Objective:** To assess contribution of respiratory viruses and bacteria and pathogen-specific population-attributable risk
 - **Rationale:** Accurate knowledge as attributable pathogen-specific burden is essential to develop effective preventive strategies including vaccine development
Methods

• Prospective case-control study: CASE: CONTROL - 1:1 (250 in each arm)
 – CASE- Children with x-ray confirmed pneumonia at PMH of all ages
 – CONTROL- Healthy children at PMH outpatients and Rheola St
 Immunisation Clinic
 – Age and frequency matched controls

• Epidemiological data collection
 – Demographic
 – Medical and immunization record

• Nasopharyngeal swab
 – Both cases and controls
 – STGG (Skim Milk–Tryptone–Glucose–Glycerol)
 – Stored at -80°C

Methods

• Laboratory testing
 – **Duplex real-time polymerase chain reaction** (PCR)- PathWest, QEII
 • Influenza viruses A, B; Parainfluenza viruses 1–4; Human Metapneumovirus;
 RSV A and B; Rhinovirus; Adeno virus; Coronavirus OC43; Coronavirus
 NL63; Coronavirus HKU1; Coronavirus 229E;

 – **Other testing including:**
 • Viral and bacterial load quantification
 • Nasopharyngeal cytokine response

• Statistical analysis
 • Compare distribution of each pathogen in cases and controls
 • Univariate Odds ratio (OR) for each pathogen
 • Logistic regression model adjusting for demographic factors and the
 presence of all pathogens
 • Population attributable risk for each pathogen
Findings

- Enrolment during May 2015-Nov 2016: 168 cases and 168 controls

- Medical information for cases
 - Hospitalization days: median 2 (IQR: 1 – 3)
 - Raised inflammatory markers (WCC ≥20 or CRP ≥40): 43%
 - Empyema: 8%
 - All children were discharged/transferred to other facilities – no death

Distribution of respiratory viruses

<table>
<thead>
<tr>
<th>Virus</th>
<th>aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 1 virus</td>
<td>5.3 (3.1–8.9)</td>
</tr>
<tr>
<td>HMPV</td>
<td>37.3 (4.3–319.0)</td>
</tr>
<tr>
<td>RSV</td>
<td>24.7 (7.8–78.0)</td>
</tr>
<tr>
<td>Influenza (overall)</td>
<td>9.2 (2.2–38.0)</td>
</tr>
<tr>
<td>Coronavirus (overall)</td>
<td>1.5 (0.3–6.67)</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>1.1 (0.5–2.3)</td>
</tr>
</tbody>
</table>

*p<0.05
Population attributable risk (%)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any respiratory virus</td>
<td>47.3</td>
<td>35.6 – 57.0</td>
</tr>
<tr>
<td>RSV</td>
<td>20.8</td>
<td>13.7 – 27.4</td>
</tr>
<tr>
<td>HMPV</td>
<td>8.6</td>
<td>3.8 – 13.1</td>
</tr>
<tr>
<td>Influenza (overall)</td>
<td>8.4</td>
<td>3.1 – 13.5</td>
</tr>
<tr>
<td>Rhino Virus</td>
<td>1.3</td>
<td>-9.1 – 10.8</td>
</tr>
<tr>
<td>Coronavirus (overall)</td>
<td>1.1</td>
<td>-3.7 – 5.8</td>
</tr>
</tbody>
</table>

Discussion and conclusion

- Respiratory viruses contributed 47% of all x-ray confirmed childhood pneumonia in Western Australia

- RSV - Leading cause of pneumonia in children
 - Effective vaccine targeting RSV could have a significant impact

- Influenza - Another important cause of pneumonia
 - Strengthen efforts to improve uptake of influenza vaccine

- Rhinoviruses - Frequently identified among cases and controls
 - Raises doubt about the significance of rhinovirus as a pneumonia-causing pathogen
Future directions

- Presence of respiratory virus
- Quantitative virology
- Quantitative bacteriology
- Host inflammatory response

Sensitive, specific and prognostic “diagnostic profiles” in children with ALRI

Diagnose and manage pneumonia and ALRI cases more efficiently
Reduce inappropriate use of antibiotics to treat ALRI

Acknowledgements

Supervisors
Peter Richmond
Christopher Blyth
Tom Snelling

PMH
Meredith Borland
Andrew Martin
ED physicians

PathWest
David Smith

Vaccine trial group, TKI
Rachel West

Respiratory virology lab